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Abstract

Two approaches for ®nding three-dimensional kinematically admissible velocity ®elds in a ¯at layer of an ideal

rigid±plastic material subjected to tension (compression) are proposed. The layer is assumed to have a simply
connected but otherwise arbitrary in-plane cross section. The kinematically admissible velocity ®elds are based on a
uniform strain rate ®eld appropriate for a layer without friction and on such a ®eld combined with the asymptotic

behavior required of a real velocity ®eld near a velocity discontinuity surface (surface with maximum shear stress).
Both of these kinematically admissible velocity ®elds are used to determine upper bounds on the limit load for
layers with quite general yield criteria. Using these limit load solutions, an approach is proposed for estimating the
distribution of tensile stresses on the symmetry plane of the layer and, in particular, the value of maximum tensile

stress. The latter is of importance for understanding fracture within the layer.
A practical application of this analysis is estimation of the strength of adhesive joints. Numerical calculations are

made for an elliptical layer with the Mises yield criterion and for a circular layer with the Tresca yield criterion. The

results compare very favorably with available slip line solutions for plane strain and axial symmetry. # 1999
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Estimation of the tensile strength of a thin layer of ductile material is of practical interest for the
analysis of adhesive joints. When the joining material is much softer than the base material, the latter
can be assumed to be rigid. Then the problem reduces to a limit load solution for a thin plastic layer
deformed between two rigid bodies. The present paper deals with tension of a thin ¯at layer with
arbitrary in-plane shape. (It is noted, however, that the mathematical formulations of the problems for
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compression and tension are the same. Therefore, all results for compression of a layer with maximum
friction also apply here and vice versa). Since the limit loads for ideal rigid±plastic and ideal elastic±
plastic material models coincide (see Drucker et al., 1952), the rigid±plastic model is adopted here. The
plane strain compression (tension) of a plastic layer between two rigid plates with maximum friction is a
particular case of the problem posed here. The stress solution for this problem was obtained by Prandtl
(1923) and the velocity solution by Hill (1950). They used the slip line technique which is restricted to
plane strain conditions for the Mises yield criterion but applicable more generally for the Tresca yield
criterion. However, some properties of solutions for the ideal rigid±plastic material are common for
di�erent yield criteria and for arbitrary deformation. In particular, the asymptotic behavior of the
velocity ®eld tangent to velocity discontinuity surfaces and maximum friction surfaces is the same near
such surfaces for all investigated yield criteria and modes of deformation. This problem has been
investigated by Sokolovskii (1956) for planar ¯ow, by Alexandrov and Druyanov (1992) for
axisymmetric ¯ow of Mises material, by Alexandrov (1992, 1995) for arbitrary ¯ow of Mises material,
by Alexandrov and Richmond (1998) for axisymmetric ¯ow of Tresca material, and by Alexandrov and
Richmond (1997) for three dimensional ¯ow of material obeying general smooth yield criteria. The main
result of all of these studies is that the velocity tangent to surfaces with maximum shear stress follows a
square root rule near such surfaces.

Alexandrov and Richmond (1997) proposed an approach for evaluating the limit load for the Prandtl
problem mentioned above combining the asymptotic velocity ®eld with an appropriate frictionless
velocity ®eld. Comparison of this upper bound on the limit load with the slip line solution and solutions
obtained by other methods (see, for example Kobayashi and Thomsen, 1964) has shown that the upper
bound derived using the new approach lies between those given by the slip line method and the uniform
deformation energy method (in the terminology of Kobayashi and Thomsen, 1964). This latter solution
for the problem under consideration is simply a solution based on a uniform strain rate ®eld. The
di�erence between the new solution and the slip line solution was very small and compared with that
obtained between a ®nite element solution and experimental results for similar problems (see, for
example Kobayashi, 1971). We develop this idea here in order to evaluate the limit load for a plastic
layer of arbitrary shape. First, the three-dimensional kinematically admissible velocity ®eld for a
frictionless layer of arbitrary shape (spatially uniform strain rates) is given. Then, this velocity ®eld is
combined with the required asymptotic velocity ®eld near velocity discontinuity surfaces, which are
assumed to exist at the bimaterial interfaces. This leads to a kinematically admissible velocity ®eld which
accounts for the behavior of a real velocity ®eld near the velocity discontinuity surfaces and also near
the symmetry plane of the layer. Both the uniform strain rate ®eld and the special behavior of the
asymptotic ®eld are the same for di�erent yield criteria, so the results given here are quite general.

Distribution of the tensile stress and its maximum value in the layer are of importance for
understanding possible fracture in the layer. Using the upper bound theorem alone it is not generally
possible to determine such stresses. An extension of the upper bound theorem to include the
determination of the local stresses was suggested by Azarkhin and Richmond (1991) who proposed
using an iterative numerical procedure after an upper bound solution has been obtained. We propose
here an appropriate analytical approach for estimating the tensile stress distribution on the symmetry
plane of the layer using the upper bound solution described above. In addition it is assumed, as seen in
the known slip line solutions, that there exists a zone near the stress free contour of the layer where the
state of stress is uniaxial tension. Moreover, it is assumed that the tensile stress on the symmetry plane
of the layer is given by a linear function of an appropriate variable which, generally speaking, should be
chosen for each speci®c shape of the layer. Nevertheless a general approach for a group of shape
con®gurations is proposed. Because of this last assumption the stress distribution is given by
nondi�erentiable functions, a circumstance that also occurs in slip line solutions under plane strain and
axisymmetric conditions. Similar stress distribution have been found in twisted bars by Nadai (1950).

S. Alexandrov, O. Richmond / International Journal of Solids and Structures 37 (2000) 669±686670



The calculated limit load gives an estimate of the maximum tensile stress and the tensile stress
distribution.

Two numerical examples illustrate the general solutions. Tension of an elliptical layer is considered
with the Mises yield criterion. An upper bound load for a circular layer, which is a particular case of the
elliptic layer, has been found by Kachanov (1956) and, using the asymptotic velocity ®eld near a surface
with maximum friction, by Alexandrov (1994). Axisymmetric tension is also considered for the Tresca
yield criterion since it is of special interest for comparison of the proposed approach with a slip line
solution obtained by Kwaszczynska and Mroz (1967). Comparison of our solutions with this slip line
solution is made for both the limit load and the distribution of tensile stress on the symmetry plane. In
addition, the ratio of the maximum tensile stress to the average tensile stress at yielding, which is
important for understanding fracture, is analyzed for both examples.

2. Solution with frictionless interface

Let us consider a plastic layer of uniform thickness 2H subject to tension between two rigid bodies as
shown in Fig. 1. The shape of the layer is arbitrary but is the same in each plane perpendicular to the
thickness direction. The contour of the layer is assumed to be stress free. We adopt a Cartesian
coordinate system xyz, the z-axis coinciding with the thickness direction and the coordinate surface
z = 0 coinciding with the symmetry plane of the layer. Then only the space zr0 needs to be
considered.

In order to ®nd a kinematically admissible velocity ®eld, we assume ®rst that no shear stresses occur
on the bimaterial interface. Then we may take the nonzero components of the strain rate tensor to be,

ÿ�1� a�xx � ÿ�1� a�aÿ1xy � xz, �1�

where a is a constant, and

xz �
v0
H
, �2�

Fig. 1. Illustration of a structure with an adhesive joint.
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where v0 is the velocity of the rigid plate. The range of a is 0 R a R 1, since a < 0 contradicts the
physical sense of the problem and the e�ect of a > 1 can be obtained by interchanging the coordinate
axes x and y. It is clear that the strain rates de®ned by Eq. (1) satisfy the incompressibility condition for
any a. Combining Eqs. (1) and (2) with the de®nitions for strain rate, the velocity ®eld is given by:

vz � v0z

H
, vx � ÿ v0x

H�1� a� and vy � ÿ v0ya
H�1� a� : �3�

We have chosen the coordinate system such that the layer as a whole does not rotate with respect to
the z-axis and the material points on the z-axis move along this axis only. Generally speaking, the
coordinate system itself may move but, in the case where no shear stresses occur on the bimaterial
interface, such rigid body motions do not in¯uence the solution. However, when this solution is used to
determine the limit load for an adhesive interface, shear stresses appear and equilibrium imposes
additional restrictions on the speci®cation of the coordinate system.

We mention two cases: a=0, plane strain tension with xy=0; and a=1, axisymmetric tension with
xy=xx. Using the normality ¯ow rule, the deviatoric portions of the stresses may be found from Eqs. (1)
and (2) for any yield criterion independent of the mean stress. It is clear that the components of the
stress deviator are constant. If, in addition, we require that the mean stress is uniform then all
equilibrium equations are automatically satis®ed. Generally, the boundary conditions on the contour of
the layer are not satis®ed. However, in the special cases, a=0 and a=1, they are satis®ed for any
smooth yield criterion and, if a=1, for the layer of arbitrary shape. Also, for the Tresca yield criterion
the boundary conditions may be satis®ed for the layer of arbitrary shape at any a. In these special cases,
the mean stress is determined by the boundary conditions and, then, the stress component sz determines
the exact limit load.

In the case a=1, it will be convenient to use a cylindrical coordinate system, ryz, with the
transformation equations

x � r cos y, y � r sin y and z � z: �4�
In these coordinates, the velocity ®eld Eq. (3) at a=1 takes the form

vr � ÿ v0r

2H
, vy � 0 and vz � v0z

H
: �5�

3. Limit load solutions for an adhesive interface

We assume that when the bimaterial interface is adhesive it will be a surface with a velocity
discontinuity. Then the absolute value of the shear stresses on this surface will be equal to the shear
yield stress, k, analogous to Prandtl's classical problem, and their directions will be opposite to the
velocity vectors. Hence,

sxz � ÿk cos�vt,i� and syz � ÿk cos�vt,j� at z � H, �6�
where vt is the vector component of the velocity tangent to the bimaterial interface and i and j are the
base vectors of the Cartesian coordinate system. The velocity ®eld Eq. (3) is still kinematically
admissible. Therefore, the simplest way to obtain a limit load is to apply this ®eld. As mentioned before,
equilibrium may impose some additional restrictions on the speci®cation of the coordinate system. Thus,
we shall satisfy equilibrium for the layer as a whole even though this is not strictly required by the
upper bound theorem. It is clear that a coordinate system in which the velocity ®eld is given by Eq. (3)
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cannot rotate with respect to the rigid plate which is assumed to move upward without rotation. By
de®nition,

cos�vt,i� � vx���������������
v2x � v2y

q and cos�vt,j� � vy���������������
v2x � v2y

q : �7�

Substituting Eq. (3) into Eq. (7) gives

cos�vt,i� � ÿ x��������������������
x2 � a2y2

p and cos�vt,j� � ÿ ay��������������������
x2 � a2y2

p : �8�

Equilibrium of the layer as a whole requires� �
S

sxyjz�H dx dy � 0 and

� �
S

syzjz�H dx dy � 0, �9�

where S is the cross-sectional area. Combining Eqs. (6), (8) and (9), we ®nd for a$0� �
S

x��������������������
x2 � a2y2

p dx dy � 0 �10a�

and � �
S

y��������������������
x2 � a2y2

p dx dy � 0: �10b�

If a cross section, z = const, has a symmetry axis then one of the axes of the coordinate system, say
y, must coincide with the symmetry axis. In this case, Eq. (10a) vanishes since the integrand is an odd
function of x. Analogously, if the cross section has two axes of symmetry, then both axes, x and y, must
coincide with these symmetry axes and both integrals (Eqs. (10a) and (10b)) automatically vanish. In the
general case, the origin of the coordinate system is determined along with the limit load by minimizing
the corresponding functional using the restrictions imposed by Eqs. (10a) and (10b).

In an arbitrary Cartesian coordinate system as de®ned above, we may write the principle of virtual
work rate for the problem under consideration. For an ideal rigid±plastic material obeying the Mises
yield criterion, this gives

Pv0 � k

� � �
V

������������
2xijxij

q
dVÿ

� �
S

�vxsxz � vysyz�jz�H dS, �11�

where P is the limit load and V is the volume of material at zr0. Substituting Eqs. (3), (6) and (8) into
Eq. (11) then gives the limit load for yielding of the plastic layer based on the frictionless kinematically
admissible velocity ®eld Eq. (3). We write the result in the form

qi � Pi

kS
� 2

���������������������
1� a� a2
p

1� a
� 1

�1� a�HS

� �
S

��������������������
x2 � a2y2

p
dx dy: �12�

It follows from the upper bound theorem that the best bound is obtained by minimizing qi with
respect to a in this expression.

In order to improve the limit load prediction, we now take into account the known behavior of a real
velocity ®eld near an adhesive bimaterial interface which is assumed to be a velocity discontinuity
surface. Then the velocity tangent to the surface must follow a square root law (see the references
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mentioned in the Introduction). We therefore modify the velocity ®eld given by Eq. (3) to the form

vx � ÿ v0x

H�1� a�

�
A� B

�������������
1ÿ z2

q �
and vy � ÿ v0ay

H�1� a�

�
A� B

�������������
1ÿ z2

q �
: �13�

where z stands for the dimensionless axial coordinate, z=z/H, and A and B are constants. We have also
taken into account that vx and vy are to be even functions of z. Combining Eq. (13) and the
incompressibility equation, @vx/@x+@vy/@y+@vz/@z = 0, gives

vz � v0

"
Az� 1

2
B

�
z
�������������
1ÿ z2

q
� sinÿ1z

�#
� C, �14�

where C is a constant of integration. The velocity vz must satisfy the boundary conditions vz=0 at z=0
and vz=v0 at z=1. Therefore C= 0 and A= 1ÿpB/4. Then, Eq. (14) takes the form

vz
v0
� z

�
1ÿ pB

4
�
�
B

2

� �������������
1ÿ z2

q �
�
�
B

2

�
sinÿ1z �15�

and Eq. (13) becomes

vx
v0
� ÿ x

H�1� a�

�
1ÿ pB

4
� B

�������������
1ÿ z2

q �
and

vy

v0
� ÿ ay

H�1� a�

�
1ÿ pB

4
� B

�������������
1ÿ z2

q �
: �16�

It is clear that the velocity ®eld does not in¯uence the equilibrium conditions which we have imposed
since the ratio vy/vx is the same for the velocity ®elds given by both Eqs. (3) and (16). Therefore, Eqs.
(10a) and (10b) are again restrictions for the speci®cation of the coordinate system. The components of
the strain rate tensor are determined from Eqs. (15) and (16) as

xx � ÿ
v0

H�1� a�

�
1ÿ pB

4
� B

�������������
1ÿ z2

q �
, �17a�

xy � ÿ
v0a

H�1� a�

�
1ÿ pB

4
� B

�������������
1ÿ z2

q �
, �17b�

xz �
v0
H

�
1ÿ pB

4
� B

�������������
1ÿ z2

q �
, �17c�

xxz � ÿ
v0Bxz

2H 2�1� a�
�������������
1ÿ z2

p , �17d�

xyz �
v0Bayz

2H 2�1� a�
�������������
1ÿ z2

p �17e�
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and

xxy � 0: �17f �
Eq. (11) is also valid and, with the use of Eqs. (6), (8), (16) and (17a±f) transforms to

qa � Pa

kS
� 1

�1� a�S
� � �

V

�����������������������������������������������������������������������������������������������������������������������������
4�1� a� a2�

�
1ÿ pB

4
� B

�������������
1ÿ z2

q �2

� B2z2

H 2�1ÿ z2� �x
2 � a2y2�

s

� dx dy dz� 1ÿ pB=4
HS�1� a�

� �
S

��������������������
x2 � a2y2

p
dx dy: �18�

It follows from the nature of friction forces that the second term in Eq. (18) must be positive at
sliding. Therefore,

B <
4

p
�19�

Moreover, it is clear that sxz > 0 and syz > 0 everywhere except on the symmetry plane, so that also
xxz > 0 and xyz > 0. Then, from Eqs. (17d) and (17e),

B > 0: �20�
Since, for any layer, the limits of integration with respect to z are always from 0 to 1, the volume

integral in Eq. (18) is improper. Therefore, we introduce a new variable

w �
�����������
1ÿ z

p
: �21�

Finally then, substituting Eq. (21) into Eq. (18) leads to the average yield stress in the form

qa � Pa

kS
� 2

�1� a�S
� � �

V��������������������������������������������������������������������������������������������������������������������������������������������������������������������
4�1� a� a2�

�
1ÿ pB

4
� Bw

�������������
2ÿ w2

p �2

w2 �H ÿ2B2�2ÿ w2�ÿ1�1ÿ w2�2�x2 � a2y2�
s

� dx dy dw� 1ÿ pB=4
HS�1� a�

� �
S

��������������������
x2 � a2y2

p
dx dy: �22�

The sign of the volume integral has been taken such that the limits of integration with respect to w are
from 0 to 1. Minimization of Eq. (22) with respect to a and B, subject to the bounds on B given by Eqs.
(19) and (20), can be carried out numerically to obtain the upper bound for any layer cross section
based on the kinematically admissible velocity ®eld (Eqs. (15) and (16)) which accounts for the necessary
asymptotic behavior of the velocity ®eld at a velocity discontinuity surface (bimaterial interface).

4. Particular cases: aa=0 and aa=1

The case a=0 leads to plane strain conditions thus corresponding to the classical Prandtl problem.
The solutions based on the approaches developed here have been obtained by Alexandrov and
Richmond (1997). The authors have compared their results with a slip line solution and found that the

S. Alexandrov, O. Richmond / International Journal of Solids and Structures 37 (2000) 669±686 675



relative di�erences are very small, especially for the solution based on the velocity ®eld accounting for

the asymptotic behavior of the velocity ®eld.

The case a=1 must be used for some particular cross sections of the layer. In particular, it is clear

that a=1 for circular and square cross sections because the coordinate system can be chosen such that

there will be no di�erence between the x and y directions. In order to ®nd a totality of cross sections for

which a=1, we ®rst consider a regular triangle as shown in Fig. 2. It is clear from geometrical

considerations that solutions found with the use of each coordinate system shown in Fig. 2 must lead to

the same result. In particular, it follows from Eq. (17f) that the directions of the axes x1, x2, and x3 are

all principal directions of the strain rate tensor. Since these directions are not orthogonal, this is possible

if and only if a=1. It is clear that this proof holds for a regular polygon with an arbitrary number of

corners, including a circle as the limit case, but excluding a square because, for a square, the

corresponding directions are orthogonal. Nevertheless, for square cross sections also, a=1 as mentioned

above. The main idea of this proof (that there are non orthogonal directions of principal axes of the

strain rate tensor or there are two identical principal line directions) can be applied to cross sections of

arbitrary shape giving the totality of shapes for which a=1. It should be noted that this proof is based

on the assumed velocity ®eld and valid only for that case. Indeed, if one allows a more general velocity

®eld it is not necessary that for a regular polygon any direction on the cross section is principal

everywhere for the strain rate tensor. On the other hand, calculations are simpli®ed when it is known in

advance that a=1, giving one less variable to minimize in Eqs. (12) and (22). Therefore, for practical

applications, one may take a=1 if the cross section under consideration di�ers little from those for

which the condition a=1 is strictly required.

At a=1, the value of qi is determined from Eq. (12) by direct calculations without minimization. In

this case, it is convenient to adopt the cylindrical coordinate system introduced by Eq. (4). Then Eq.

(12) takes the form

Fig. 2. Cross section in the shape of a regular triangle and equivalent coordinate systems.
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qi �
���
3
p
� 1

2HS

� �
S

r2 dr dy: �23�

The value of qa follows from Eq. (22):

qa � Sÿ1
� � �

V

�����������������������������������������������������������������������������������������������
12

�
1ÿ pB

4
� Bw

�������������
2ÿ w2

p �2

w2 � B2�1ÿ w2�2r2
H 2�2ÿ w2�

s
r dr dy dw� 1ÿ pB=4

2HS

� �
S

r2 dr dy:

�24�

In order to obtain the best upper bound, this expression should be minimized with respect to B.
The analysis in Sections 4 and 5 has been explicitly performed for the Mises yield criterion. However,

since the asymptotic behavior of the velocity ®eld is the same for quite arbitrary smooth yield criteria
(Alexandrov and Richmond, 1997) and for the Tresca yield criterion (Alexandrov and Richmond, 1998),
the analysis also holds in these cases. The only di�erence is that the integrand in the volume integral in
Eq. (11) must be taken in the form corresponding to the selected yield criterion.

Fig. 3. Elliptical layer. Zones with di�erent analytical expressions for sz.
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5. Stress distribution at z = 0

Upper bound solutions do not allow one to determine stresses directly. Nevertheless, we propose here

a simple analytical approach for approximating the distribution of sz on z = 0 for possible estimation

of fracture limits in the adhesive layer. We assume that the stress distribution corresponding to simple

tension is a good approximation to the real stress distribution near the stress free surface of the layer.

We also assume that the width of the zone where this distribution occurs is approximately equal to the

half thickness of the layer, H. This width is to be de®ned for each speci®c problem as illustrated below.

Within this zone, any yield criterion gives sz=sY, with sY being the tensile yield stress. We mention

that these conditions are exactly satis®ed for plane strain deformation and for axisymmetric deformation

with the Tresca yield criterion. For the same problems, it is well known from slip line solutions that the

origin of the coordinate system is a singular point for sz, so that its derivatives do not exist at this

point. Therefore, it seems that in cases of practical interest with cross sections for which the condition

a=1 is satis®ed, it is reasonable to assume a linear distribution of sz along a radial coordinate. Then sz
reaches a maximum value, smax, at the origin of the coordinate system. For such cases, the boundary of

the zone where simple tension occurs may be taken to be similar to the contour of the layer but with

smaller perimeter. However, it should be noted that, theoretically, it is not always possible to ®nd such a

boundary. The maximum value of sz is determined using the calculated limit load. In order to assume a

stress distribution at a$1, it is reasonable to take the sz distribution to be similar to the plastic stress

function in the cross section of a twisted bar given by Nadai (1950) [pp. 502, 503]. In these cases, the

maximum tensile stress is again determined by the limit load.

It seems that for any speci®c cross section reasonable assumptions may be made to obtain an

appropriate stress distribution. Examples will be given in the next section.

Fig. 4. Variation of the average tensile stress at yielding with the aspect ratio (elliptic cross section, Mises yield criterion).
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6. Examples

6.1. Elliptical layer, aa$1

Let a0 and b0 be the half lengths of the principal axes of an ellipse. Since a cross section, z = const,
has two axes of symmetry, the axes of the Cartesian coordinate system should coincide with these axes.
Then, Eqs. (10a) and (10b) are automatically satis®ed. An arbitrary cross section, z = const, is shown in
Fig. 3. Let us introduce the dimensionless coordinates, X=x/a0 and Y=y/b0, and the half length of the
axes, a=a0/H and b=b0/H. The equation of the ellipse in the Cartesian coordinate system may then be
written in the form

X 2 � Y 2 � 1 �25�

and the area of the cross section as

S � pabH 2: �26�

Using Eqs. (25) and (26), Eq. (12) may be transformed to

qi �
���������������������
1� a� a2
p

1� a
� 4a

p�1� a�
�1
0

� ����������
1ÿX 2
p

0

����������������������������
X 2 � a2b2Y 2

q
dY dX, �27�

where b is the aspect ratio, b=b0/a0. Minimization of this expression with respect to a has been carried
out numerically. The variation of qi with b for di�erent values of a is shown in Fig. 4. The limit load
for a circular cross section is determined at b=1 where a=1. The dependence of a on b is nearly the
same for all considered values of a and is shown in Fig. 5. One can see from this ®gure that, as the
aspect ratio b increases, the value of a decreases, very quickly approaching the plane strain value at
b 41. Analogously, we may obtain the expression for qa from Eq. (22) in the form

Fig. 5. Variation of a with the aspect ratio (elliptic layer, Mises yield criterion).
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qa � 8

p�1� a�
�1
0

�1
0

� ����������
1ÿX 2
p

0�����������������������������������������������������������������������������������������������������������������������������������������������������������������������
4�1� a� a2�

�
1ÿ pB

4
� Bw

�������������
2ÿ w2

p �2

w2 � a2B2�2ÿ w2�ÿ1�1ÿ w2�2�X 2 � a2b2Y 2�
s

� dY dX dw� 4a�1ÿ pB=4�
p�1� a�

�1
0

� ��������
1ÿw2
p

0

����������������������������
X 2 � a2b2Y 2

q
dX dY: �28�

This expression has been minimized numerically with respect to B and a. Variation of qa with b for
di�erent values of a is shown in Fig. 4. One can see from this ®gure that qa < qi at any a and b because
the kinematically admissible velocity ®eld for qa ful®lls an added requirement of the actual velocity ®eld.
The a value di�ers very little from that given in Fig. 5. The B value satis®es the conditions of Eqs. (19)
and (20).

In order to ®nd a distribution of the sz stress and its maximum value, we assume that the boundary
of the zone where sz=sY is also an ellipse with the equation

x2

�a0 ÿH �2 �
y2

�b0 ÿH �2 � 1: �29�

We also assume that the stress sz is singular on the line mn between the foci of the ellipse given by Eq.
(29). The cross section divided into the zones with di�erent analytical expressions for sz and the mn line
are shown in Fig. 3. For the problem under consideration, it is natural to adopt an elliptic±hyperbolic
coordinate system with the transformation equations (see, for example Flugge, 1972; p. 194)

x � z0 sinh l sin m �30a�
and

y � z0 cosh l cos m: �30b�
The multiplier z0 has been introduced to satisfy the condition that a coordinate line l=l0 coincides

with the curve given by Eq. (29) which is, of course, an additional assumption. (We have also
interchanged the notation of the axes used by Flugge, 1972). Then,

z0 � H

������������������������������������
�bÿ 1� ÿ �aÿ 1�2

q
and

tanh l0 � aÿ 1

bÿ 1
: �31�

It is clear from Eq. (30a) that the value of z0 gives the half length of the mn line. As proposed in
Section 5, the stress sz should satisfy the conditions sz=sY at l=l0 and sz=smax at l=0. The simplest
way to satisfy both of these conditions is to assume

sz � �smax�l0 ÿ l� � sYl�lÿ10 : �32�
The area element in an elliptic±hyperbolic coordinate system is given by

dS � H 2��bÿ 1�2 ÿ �aÿ 1�2��cosh2lÿ cos2m�dl dm: �33�
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The limit load may be expressed as

P

4
� sYS0

4
�
� p
2

0

�l0
0

sz dS, �34�

where S0 is the area of the zone where sz=sY. It follows from Eqs. (26) and (29) that

S0 � pH 2�b� aÿ 1�: �35�
The value P in Eq. (34) may be replaced by Pi or Pa. Then this equation determines smax and, with

the use of Eq. (32), the distribution of the stress sz at z = 0. Since sY=Z3k for the Mises yield
criterion, substituting Eqs. (32), (33) and (35) into Eq. (34) gives

smax

k
�

(
�qabÿ ���

3
p �b� aÿ 1��pl0

4��bÿ 1�2 ÿ �aÿ 1�2� ÿ
���
3
p � p

2

0

�l0
0

l�cosh2lÿ cos2m�dl dm

)
� p
2

0

�l0
0

�l0 ÿ l��cosh2lÿ cos2m�dl dm

: �36�

The value of smax/k has been calculated using q=qa giving the results shown in Fig. 6(a). The ratio

Fig. 6. Variation of the maximum tensile stress and the ratio of the average tensile stress to the maximum tensile stress with the

sizes of the layer.
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kqa/smax, which is important for evaluating fracture, is nearly the same for all considered values of a
and its dependence on b is shown in Fig. 6(b).

As b 41, the results should be close to those obtained for Prandtl's classical solution. Hill (1950)
gives the following equation approximating the results of a slip line solution for ar1

qPr � �3� a�
2

in our nomenclature (2a should be considered as the width of the plate). Applying the approach
proposed in Section 5, one may obtain

smax

k
� 5:5; 7:4 and 9:4 at a � 3; 5 and 7,

respectively and qPrk/smax is approximately 0.54 for these values of a. It is seen from Fig. 6 that these
results are in agreement with our calculations for large b.

6.2. Axisymmetric layer, aa=1

Tension of an axisymmetric layer for the Tresca yield criterion is of special interest for veri®cation of
the proposed approaches since a slip line solution for this case has been obtained by Kwaszczynska and
Mroz (1967). These researchers investigated compression but this does not matter as mentioned
previously. In the case of the Tresca yield criterion, Eq. (11) should be replaced by

Pv0 � 2k

� � �
V

jxmaxjdVÿ
� �

S

�vrsrz�jz�H ds, �37�

where xmax is the principal strain rate of maximum absolute value.
Let R0 be the radius of the layer. In order to apply the ®rst approach, we take the velocity ®eld Eq.

(5) as kinematically admissible. It is clear that, in this case,

jxmaxj � xz �
v0
H
: �38�

The surface integral in Eq. (37) coincides with that of Eq. (11). Therefore, combining Eqs. (37) and
(38) we ®nd an upper bound in the form

qi � 2� pR3
0

�3HS � : �39�

Since, for the round layer

S � pR2
0, �40�

Eq. (39) results in

qi � 2� r0
3
: �41�

with r0=R0/H.
In order to obtain an improved upper bound based on the asymptotic velocity ®eld, we may also use

the velocity ®eld given by Eqs. (15) and (16) with a=1. Because of symmetry, the circumferential strain
rate is a principal one and can be found from Eq. (16) as
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xy � ÿ
v0
2H

�
1ÿ pB

4
� B

�������������
1ÿ z2

q �
: �42�

The principal strain rates in a meridian plane are given by

x1,2 �
1

2
�xr � xz�2

1

2

���������������������������������
�xr ÿ xz�2 � 4x2rz

q
: �43�

Using Eqs. (15), (16) and (42), we can rewrite Eq. (43) in the form

x1,2 � ÿ
1

2

�
xy3

���������������������
9x2y � 4x2rz

q �
: �44�

It is clear from this equation that the principal strain rate of the maximum absolute value lies in a
meridian plane. Since xy < 0, we have xr+xz > 0, and then it follows from Eq. (44) that

jxmaxj �
1

2

�
ÿ xy �

���������������������
9x2y � 4x2rz

q �
: �45�

The shear strain rate may be calculated from the velocity ®eld, and then substituted together with Eq.
(42) into Eq. (45) to give,

jxmaxj �
v0
4H

24
1ÿ pB

4
� B

�������������
1ÿ z2

q
�

�����������������������������������������������������������������������
9

�
1ÿ pB

4
� B

�������������
1ÿ z2

q �2

�r
2B2z2

1ÿ z2

s 35: �46�

The surface integral in Eq. (37) coincides with that in Eq. (11). Therefore, substituting Eq. (46) into
Eq. (37) and taking into account the axial symmetry of the problem leads to

qa � 2rÿ20

�1
0

�r0
0

24
1ÿ pB

4
� B

�������������
1ÿ z2

q
�

�����������������������������������������������������������������������
9

�
1ÿ pB

4
� B

�������������
1ÿ z2

q �2

�r
2B2z2

1ÿ z2

s 35r dr dz� r0
3

�
1ÿ pB

4

�
:

Using Eq. (21), this equation may be transformed into

qa � rÿ20

�1
0

�r0
0

"�
1ÿ pB

4
� Bw

�������������
2ÿ w2

p �
w� 9

�
1ÿ pB

4
� Bw

�������������
1ÿ w2

p �2

w2 � r2B2�1ÿ w2�
2ÿ w2

#

� r dr dw� r0
3

�
1ÿ pB

4

�
:

The upper bound has been found numerically minimizing this expression for qa with respect to B.
Dependence of qa on r0 is given quite accurately by a linear function

qa � 1:79� 0:33r0: �47�
Kwaszczynska and Mroz (1967) have determined an upper bound numerically using the slip line

technique. We refer to their results for r0=3 after Szczepinski (1979) [p. 235]. Kwaszczynska and Mroz
found qKM=2.72. Our results for this value of r0 are qi=3 and qa=2.78. Thus, the relative di�erences
between the slip line solution and our solutions, especially that based on the asymptotic velocity ®eld,
are very small.

In order to determine the stress distribution we adopt here the approach proposed in Section 5 for
cross sections with a=1. The sz stress distribution is assumed to be
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sz � �smax�R0 ÿHÿ r� � sYr�
�R0 ÿH � �48�

at 0 R r R R0ÿH. Then the limit load is given by

P � sYpH�2R0 ÿH � � 2

3
p�R0 ÿH �2

�
smax

2
� sY

�
: �49�

Taking into account that sY=2k for the Tresca yield criterion, we ®nd smax from Eq. (49)

smax

k
� 3

ÿ
qr20 ÿ 4r0 � 2

�
�r0 ÿ 1�2 ÿ 4: �50�

Calculations have been made putting q=qa. The ratio kqa/smax is approximately constant within the
considered range of r0 and is between 0.38 and 0.4. The distribution of sz along the radius based on the
lower bound slip line solution of Kwaszczynska and Mroz along with our results based on the upper
bound solution are given for r0=3 in Fig. 7.

7. Concluding remarks

An approach for estimating the yield load for plastic layers of uniform thickness and arbitrary in-
plane simple connected shape has been proposed. Kinematically admissible velocity ®elds are based on
an appropriate velocity ®eld for a frictionless layer and the known asymptotic behavior of the real
velocity ®eld near the bimaterial interfaces in a layer with a velocity discontinuity at these surfaces.
Speci®c expressions in integral form have been obtained for the tensile or compressive yield load, but
the approach can be applied to other deformation modes such as bending, torsion and combinations of
these with normal loading. In the most general form, the calculations of the limit load require
minimization with respect to two variables. However, it has been shown that there is a group of cross

Fig. 7. Distribution of tensile stresses on the symmetry plane of a circular layer based on the slip line lower bound solution and

new upper bound solution for r0=3.
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sections of practical interest for which this number can be reduced to one. In addition to the necessary
requirements of the upper bound theorem, overall equilibrium of the layer is satis®ed in all solutions.

A possible application of these solutions is the estimation of the strength of adhesive joints. For
this purpose, not only the limit load, but also the maximum tensile stress in the layer is of
importance. To this end a simple analytical approach using the calculated limit load has been
proposed to determine the distribution of the tensile stress on the symmetry plane of the layer,
including the maximum tensile stress. It has been assumed that the sz stress is singular at some point
or on some line. In the example it was natural to adopt an elliptic±hyperbolic coordinate system which
formed such a line. In more general cases it seems that the medial axis of a cross section might be used
as a singular line for the stress. For brittle material and for very thin layers, fracture may occur at a
lower load than the limit load. In such situations the approach can show that an analysis of brittle
fracture must be added.

The general analysis holds for quite arbitrary yield criteria independent of the mean stress. Numerical
examples have been given for the Mises and Tresca yield criteria. Tension of an elliptical layer has been
investigated for the Mises yield criterion and tension of a circular layer, for the Tresca yield criterion.
The results of the latter case have been compared with a known slip line solution for this problem
illustrating good agreement for both the limit load and the tensile stress distribution.

The general approach used here for simply connected joints can be extended to multiply connected
joints such as are needed for joining hollow sections. However, in this case, the underlying frictionless
velocity ®eld must be modi®ed. This will be the subject of a subsequent investigation.
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